
Fast convolution using polynomial
transforms

by

Jens Hee
https://jenshee.dk

January 2004

Change log

3. November 2003

1. Document started.

22. November 2003

1. Program example added.

1. January 2004

1. Program example with new font.

13. March 2020

1. Meta data added.

i

Contents

1 Introduction 1

2 Basic facts 2
2.1 Polynomial products and convolution . 2
2.2 Polynomial products and multiplication . 3

3 Circular convolution 4

4 Computation of polynomial products modulo (ZN − 1) 5

5 Computation of polynomial products modulo (ZN + 1) 6

6 Computation of polynomial transforms 8
6.1 Decimation-in-Time Algorithm . 8
6.2 Decimation-in-Frequency Algorithm . 9

A The Chinese Remainder Theorem 11

B The Polynomial Transform 12

C Program example 13

ii

Chapter 1

Introduction

In the following an algorithm for fast computation of the convolution of two sequences of equal
length is reviewed. Fast convolution is of great importance in digital filtering and it is in this
area most research has been made. However, algorithms for fast multiplication of large numbers
can also benefit from the theory of convolution especially convolution of sequences of rational
numbers.
The method was first proposed by H. J. Nussbaumer who has given a description in his book ”Fast
Fourier Transforms and Convolution Algorithms”, together with other efficient methods for fast
convolution. A more thorough description can be found in his paper ”Fast Polynomial Transform
Algorithms for Digital Convolution” IEEE Trans. ASSP april 1980.
The method is based on the computation of polynomial products using the Chinese remainder
theorem and polynomial transforms. It does not require any real number operations and is there-
fore well suited for computations on sequences of integers and rational numbers. Although it
may seem rather cumbersome it turns out to give substantial savings in the number of arithmetic
operations required, the asymptotic behavior being of the order NlogN where N is the length of
the input sequences.
The presentation given in the following will hopefully add to the understanding of the method.

1

Chapter 2

Basic facts

Before introducing the algorithm, some basic facts are given about how convolution and integer
multiplication can be viewed as a product of two polynomials.

2.1 Polynomial products and convolution

In general the convolution of two sequences is given by:

yk =
∞∑

n=−∞
hnxk−n −∞ < k <∞

For finite sequences of length N the convolution is a sequence of length 2N − 1 given by:

yk =
N−1∑
n=0

hnxk−n k = 0, ..., 2N − 2

where it is assumed that xk = 0 for n < 0 and n > N − 1.

It will now be shown that this is equivalent to finding the coefficients of the product of two
polynomials.

Given two polynomials of degree N − 1:

X(Z) =
N−1∑
n=0

xnZ
n

H(Z) =
N−1∑
n=0

hnZ
n

then the product of the two polynomials is a polynomial of degree 2N − 2 given by:

Y (Z) = H(Z)X(Z)

=
2N−2∑
n=0

ynZ
n

2

=
N−1∑
n=0

hnZ
n
N−1∑
n=0

xnZ
n

=
N−1∑
n=0

N−1∑
m=0

hnxmZ
n+m

=
N−1∑
n=0

N−1+n∑
k=n

hnxk−nZ
k

If we let xn = 0 for n < 0 and n > N − 1, then Y (Z) can be written:

Y (Z) =
2N−2∑
k=0

N−1∑
n=0

hnxk−nZ
k

and the coefficients yk are given by:

yk =
N−1∑
n=0

hnxk−n k = 0, ..., 2N − 2

This shows that the sequence y is the convolution of the sequences x and h, or inversely, the
convolution of two sequences can be computed by a polynomial product.

2.2 Polynomial products and multiplication

Any two N -digit integers A and B can in a positional number system with base b be written:

A =
N−1∑
n=0

xnb
n

B =
N−1∑
n=0

hnb
n

substituting Z for b one obtains two polynomials:

X(Z) =
N−1∑
n=0

xnZ
n

H(Z) =
N−1∑
n=0

hnZ
n

and consequently:
AB = H(Z)X(Z) for Z = b

This shows that multiplication of two integers can be computed by a polynomial product followed
by an evaluation of the resulting polynomial for Z = b.

3

Chapter 3

Circular convolution

As seen from the previous section the problem of convoluting two sequences as well as multiplica-
tion of two integers can be stated:

yk =
N−1∑
n=0

hnxk−n k = 0, ..., 2N − 2

or alternatively:
Y (Z) = H(Z)X(Z)

However, the algorithm described in the following section can only be used to compute the circular
convolution given by:

yk =
N−1∑
n=0

hnxk−n k = 0, ..., N − 1

where all indices in the summation are modulo N .

or alternatively:
Y (Z) ≡ H(Z)X(Z) modulo(ZN − 1)

here and in the following the term on the left hand side denotes the polynomial in the equivalence
class having the degree L, where 0 ≤ L ≤ N − 1.
The limitation to circular convolution is not a serious problem since an ordinary convolution is
identical to a circular convolution if the sequences x and h are extended with zeros to the double
length.

4

Chapter 4

Computation of polynomial products
modulo (ZN − 1)

The problem considered in this section is the computation of polynomial products modulo (ZN−1):

Y (Z) ≡ H(Z)X(Z) modulo(ZN − 1)

In the following only values of N = 2t are considered although the basic idear behind the algorithm
can be used for other values of N .
The first step is to reduce the complexity of the problem by using the Chinese remainder theorem
(see appendix A). Since N = 2t, (ZN − 1) can be factorized as:

ZN − 1 = (ZN/2 + 1)(ZN/2 − 1)

and Y (Z) can be written:

Y (Z) ≡ 1

2
(ZN/2 + 1)Y1(Z)− (ZN/2 − 1)Y2(Z) modulo (ZN − 1)

where:

Y1(Z) ≡ H1(Z)X1(Z) modulo (ZN/2 − 1)

X1(Z) ≡ X(Z) modulo (ZN/2 − 1)

H1(Z) ≡ H(Z) modulo (ZN/2 − 1)

Y2(Z) ≡ H2(Z)X2(Z) modulo (ZN/2 + 1)

X2(Z) ≡ X(Z) modulo (ZN/2 + 1)

H2(Z) ≡ H(Z) modulo (ZN/2 + 1)

The computation of Y from Y1 and Y2 is strait forward and the problem is reduced to computing
Y1 and Y2.
Y1 is a polynomial product modulo (ZN/2−1) and can be recursively computed by use of the above
method. Y2, on the other hand, is a polynomial product modulo (ZN/2 + 1). The computational
procedure for this problem is described in the following section.

5

Chapter 5

Computation of polynomial products
modulo (ZN + 1)

The problem considered in this section is the computation of polynomial products modulo (ZN+1):

Y (Z) ≡ H(Z)X(Z) modulo(ZN + 1)

where N = 2t.

First X, H and Y are rewritten as two-dimensional polynomials:

X
′
(Z,Z1) =

L1−1∑
n=0

L2−1∑
m=0

xL1m+nZ
m
1 Zn =

L1−1∑
n=0

Qn(Z1)Z
n

H
′
(Z,Z1) =

L1−1∑
n=0

L2−1∑
m=0

hL1m+nZ
m
1 Zn =

L1−1∑
n=0

Rn(Z1)Z
n

Y
′
(Z,Z1) =

L1−1∑
n=0

L2−1∑
m=0

yL1m+nZ
m
1 Zn =

L1−1∑
n=0

Sn(Z1)Z
n

where Qn, Rn and Sn are polynomials in Z1 of degree L2 − 1, Z1 = ZL1 and L1L2 = N .

Since:

X
′
(Z,Z1) ≡ X(Z) modulo (ZL1 − Z1)

H
′
(Z,Z1) ≡ H(Z) modulo (ZL1 − Z1)

Y
′
(Z,Z1) ≡ Y (Z) modulo (ZL1 − Z1)

ZL2
1 + 1 ≡ ZN + 1 modulo (ZL1 − Z1)

the polynomial product HX modulo (ZN + 1) can be expressed by:

P
′
(Z,Z1) ≡ H

′
(Z,Z1)X

′
(Z,Z1) modulo (ZL1 − Z1)

Y
′
(Z,Z1) ≡ P

′
(Z,Z1) modulo (ZL2

1 + 1)

6

or alternatively:

U
′
(Z,Z1) ≡ H

′
(Z,Z1)X

′
(Z,Z1) modulo (ZL2

1 + 1)

V
′
(Z,Z1) ≡ U

′
(Z,Z1) modulo (ZL1 − Z1)

Y
′
(Z,Z1) ≡ V

′
(Z,Z1) modulo (ZL2

1 + 1)

The computation of Y
′

from U
′

is strait forward and the problem is reduced to finding U
′
.

U
′
(Z,Z1) can be written:

U
′
(Z,Z1) =

2L1−2∑
n=0

Un(Z1)Z
n

where Un is a polynomial in Z1 of degree L2 − 1.

and consequently:

Uk(Z1) ≡
L1−1∑
n=0

Rn(Z1)Qk−n(Z1) modulo (ZL2
1 + 1) k = 0, ..., 2L1 − 2

if we in the summation let Qn(Z) = 0 for n < 0 and n > L1 − 1.

Now letting Rn(Z1) = Qn(Z1) = 0 for L1 ≤ n ≤ 2L1 − 1, U2L1−1(Z1) = 0 and taking all in-
dices modulo 2L1 then Uk(Z1) can be written:

Uk(Z1) ≡
2L1−1∑
n=0

Rn(Z1)Qk−n(Z1) modulo (ZL2
1 + 1) k = 0, ..., 2L1 − 1

This shows that the sequence Uk is a circular convolution of the sequences Rn and Qn and conse-
quently can be computed using polynomial transforms (see Appendix B). As a result one has:

Uk(Z1) ≡
1

2L1

2L1−1∑
n=0

Rn(Z1)Qn(Z1)Z
−(L2/L1)nk
1 modulo (ZL2

1 + 1) k = 0, ..., 2L1 − 1

where:

Qn(Z1) =
2L1−1∑
k=0

Qk(Z1)Z
(L2/L1)kn
1 modulo (ZL2

1 + 1) n = 0, ..., 2L1 − 1

Rn(Z1) =
2L1−1∑
k=0

Rk(Z1)Z
(L2/L1)kn
1 modulo (ZL2

1 + 1) n = 0, ..., 2L1 − 1

L2 ≥ L1 since L2/L1 must be an integer. It has been shown that the best choice for L1 and L2 is
the one that gives the least quotient (see Nussbaumer).
The polynomial products QnRn modulo ZL2

1 +1 is computed by recursive use of the above method
and the final problem is to find an efficient method for computing the polynomial transforms. This
is described in the next section.

7

Chapter 6

Computation of polynomial transforms

The problem considered in this section is the computation of polynomial transforms of the form:

Yk(Z) ≡
N−1∑
n=0

Xn(Z)ZPkn modulo (ZL + 1) k = 0, ..., N − 1

where P = 2L/N , P being an integer.

The polynomial transform is similar to the DFT and can be computed correspondingly, that
is, using an FFT-like algorithm. The presentation and notation given in the next section is very
similar to the presentation given in standard textbooks on FFT.

6.1 Decimation-in-Time Algorithm

By splitting the polynomial sequence X into two sequences using the even and odd indices one
obtains:

Yk(Z) ≡
N−1∑
n=0

Xn(Z)ZPkn

≡
∑

n even

Xn(Z)ZPkn +
∑
n odd

Xn(Z)ZPkn

≡
N/2−1∑
n=0

X2n(Z)Z2Pkn + ZPk
N/2−1∑
n=0

X2n+1(Z)Z2Pkn modulo (ZL + 1)

and

Yk+N/2(Z) ≡
N/2−1∑
n=0

X2n(Z)Z2Pkn + ZPkZPN/2
N/2−1∑
n=0

X2n+1(Z)Z2Pkn

≡
N/2−1∑
n=0

X2n(Z)Z2Pkn − ZPk
N/2−1∑
n=0

X2n+1(Z)Z2Pkn modulo (ZL + 1)

By recursively using the procedure on the new sequences, one obtains an algorithm equivalent to
the Decimation-in-Time FFT-algorithm as shown on Figure 6.1.

8

6.2 Decimation-in-Frequency Algorithm

By splitting the polynomial sequence X into two sequences using the first and second half one
obtains:

Yk(Z) ≡
N−1∑
n=0

Xn(Z)ZPkn

≡
N/2−1∑
n=0

Xn(Z)ZPkn +
N−1∑

n=N/2

Xn(Z)ZPkn

≡
N/2−1∑
n=0

Xn(Z)ZPkn + ZPkN/2
N/2−1∑
n=0

Xn+N/2(Z)ZPkn

≡
N/2−1∑
n=0

(Xn(Z) + (−1)kXn+N/2(Z))ZPkn modulo (ZL + 1)

and

Y2k(Z) ≡
N/2−1∑
n=0

(Xn(Z) + Xn+N/2(Z))Z2Pkn modulo (ZL + 1)

Y2k+1(Z) ≡
N/2−1∑
n=0

(Xn(Z)−Xn+N/2(Z))ZPnZ2Pkn modulo (ZL + 1)

By recursively using the procedure on the new sequences, one obtains an algorithm equivalent to
the Decimation-in-Frequency FFT-algorithm as shown on Figure 6.2.

9

Figure 6.1: First step of Decimation-in-Time algorithm

Figure 6.2: First step of Decimation-in-Frequency algorithm

10

Appendix A

The Chinese Remainder Theorem

Traditionally the Chinese remainder theorem has been used to solve a set of k linear congruences:

x ≡ ri modulo pi i = 1, ..., k

This problem has a unique solution if pi are relative prime in pairs:

x =
k∑

i=1

PiTiri modulo P

where

P =
k∏

i=1

pi

Pi =
k∏

j=1
j 6=i

pj

PiTi ≡ 1 modulo pi

The equivalent theorem for polynomials is then:

X(Z) ≡
k∑

i=1

Pi(Z)Ti(Z)Ri(Z) modulo P (Z)

if
Ri(Z) ≡ X(Z) modulo pi(Z) i = 1, ..., k

P (Z) =
k∏

i=1

pi(Z)

Pi(Z) =
k∏

j=1
j 6=i

pj(Z)

Pi(Z)Ti(Z) ≡ 1 modulo pi(Z)

The pi(Z) may not have common factors (usually called relatively prime polynomials).

11

Appendix B

The Polynomial Transform

The polynomial transform of a sequence of polynomials is defined by:

Xk(Z) ≡
N−1∑
n=0

Xn(Z)Gkn(Z) modulo P (Z) k = 0, ..., N − 1

If the following conditions hold:
1. GN(Z) ≡ 1 modulo P (Z)
2. N 6= 0
3. G(Z) has an inverse modulo P (Z)

4.
∑N−1

k=0 Gqk(Z) ≡
{

0 modulo P (Z) for q 6≡ 0 modulo N
N modulo P (Z) for q ≡ 0 modulo N

then the well known convolution property of the DFT also holds for the polynomial transform.

That is, if:

Yk(Z) ≡
N−1∑
n=0

Hn(Z)Xk−n(Z) modulo P (Z) k = 0, ..., N − 1

then:

Yk(Z) ≡ 1

N

N−1∑
n=0

Hn(Z)Xn(Z)G−kn(Z) modulo P (Z) k = 0, ..., N − 1

where:

Xk(Z) ≡
N−1∑
n=0

Xn(Z)Gkn(Z) modulo P (Z) k = 0, ..., N − 1

Hk(Z) ≡
N−1∑
n=0

Hn(Z)Gkn(Z) modulo P (Z) k = 0, ..., N − 1

note that all indices are taken modulo N .

As a special case if we let G(Z) = ZP and P (Z) = ZL + 1 where 2L = PN then it is easily
seen that the above conditions for the convolution theorem to be valid are met.

12

Appendix C

Program example

#include "stdio.h"

#include "math.h"

const NMax = 65536;

const SomeMore = 300;

const PolyTempMax = 256;

#define NUMBERTYPE long

NUMBERTYPE * Global = new NUMBERTYPE[4*NMax + SomeMore];

long CountAdd;

long CountMul;

// Standard circular convolution

void CircConv(long N, NUMBERTYPE *X, NUMBERTYPE *H, NUMBERTYPE *Y)

{

long i, j;

for (i = 0; i < N ;i++)

Y[i] = 0;

for (i = 0; i < N ;i++)

for (j = 0; j < N ;j++)

if (i + j < N)

Y[i + j] += X[j] * H[i];

else

Y[i + j - N] += X[j] * H[i];

}

void WriteResult(long N, NUMBERTYPE *X)

{

long i;

for (i = 0; i < N; i++)

{

printf("%8d", X[i]);

if ((i % 10) == 9)

printf("\n");

}

printf("\n");

}

void ModuloPlusMinus(long N, long X)

{

long i;

NUMBERTYPE Temp;

for (i = 0; i < N; i++)

{

13

Temp = Global[X + i];

Global[X + i] = Temp - Global[X + i + N];

Global[X + i + N] = Temp + Global[X + i + N];

CountAdd += 2;

}

}

void MulAddDiv(long N, long X1, long X2)

{

long i;

NUMBERTYPE Temp;

for (i = 0; i < N; i++)

{

Temp = Global[X1 + i];

Global[X1 + i] = (Temp + Global[X2 + i]) / 2;

Global[X1 + i + N] = (-Temp + Global[X2 + i]) / 2;

CountAdd += 2;

}

}

void PermutePolySub(long N, long K, long X, NUMBERTYPE * Y, long Z)

{

long i;

long adr;

long ex;

for (i = 0; i < N; i++)

{

adr = (i + K + 2 * N * N) % N;

ex = ((i + K + 2 * N * N) / N) % 2;

if (ex == 0)

{

Global[Z + adr] = Global[X + i] - Y[i];

CountAdd ++;

}

else

{

Global[Z + adr] = -Global[X + i] + Y[i];

CountAdd ++;

}

}

}

void PolyAdd(long N, long X, NUMBERTYPE * Y, long Z)

{

long i;

for (i = 0; i < N; i++)

{

Global[Z + i] = Global[X + i] + Y[i];

CountAdd ++;

}

}

void PolySubPermute(long N, long K, long X, NUMBERTYPE * Y, long Z)

{

long i;

long adr;

long ex;

for (i = 0; i < N; i++)

{

14

adr = (i + K + 2 * N * N) % N;

ex = ((i + K + 2 * N * N) / N) % 2;

if (ex == 0)

{

Global[Z + adr] = Global[X + adr] - Y[i];

CountAdd ++;

}

else

{

Global[Z + adr] = Global[X + adr] + Y[i];

CountAdd ++;

}

}

}

void PolyAddPermute(long N, long K, long X, NUMBERTYPE * Y, long Z)

{

long i;

long adr;

long ex;

for (i = 0; i < N; i++)

{

adr = (i + K + 2 * N * N) % N;

ex = ((i + K + 2 * N * N) / N) % 2;

if (ex == 0)

{

Global[Z + adr] = Global[X + adr] + Y[i];

CountAdd ++;

}

else

{

Global[Z + adr] = Global[X + adr] - Y[i];

CountAdd ++;

}

}

}

void PolyTransNB(long N, long L2, long K, long X)

{

long i;

long M;

long m1;

long P;

long p1;

long Q;

long q1;

long adr;

NUMBERTYPE *Temp = new NUMBERTYPE[PolyTempMax];;

M = (long)floor(0.5 + log(N) / log(2));

P = 1;

Q = N / 2;

for (m1 = 0; m1 < M; m1++)

{

for (p1 = 0; p1 < P; p1++)

for (q1 = 0; q1 < Q; q1++)

{

adr = q1 + 2 * p1 * Q;

for (i = 0; i < L2; i++)

Temp[i] = Global[X + L2 * (adr +Q) + i];

PermutePolySub(L2, P * q1 * K, X + L2 * adr, Temp, X + L2 * (adr + Q));

PolyAdd(L2, X + L2 * adr, Temp, X + L2 * adr);

}

15

P *= 2;

Q /= 2;

}

delete []Temp;

}

void PolyTransBN(long N, long L2, long K, long X)

{

long i;

long M;

long m1;

long P;

long p1;

long Q;

long q1;

long adr;

NUMBERTYPE *Temp = new NUMBERTYPE[PolyTempMax];;

M = (long)floor(0.5 + log(N) / log(2));

P = N / 2;

Q = 1;

for (m1 = 0; m1 < M; m1++)

{

for (p1 = 0; p1 < P; p1++)

for (q1 = 0; q1 < Q; q1++)

{

adr = q1 + 2 * p1 * Q;

for (i = 0; i < L2; i++)

Temp[i] = Global[X + L2 * (adr + Q) + i];

PolySubPermute(L2, P * q1 * K, X + L2 * adr, Temp, X + L2 * (adr + Q));

PolyAddPermute(L2, P * q1 * K, X + L2 * adr, Temp, X + L2 * adr);

}

P /= 2;

Q *= 2;

}

delete []Temp;

}

void NegaConvolution(long N, long X, long H, long Y)

{

long i, k;

long N2, N3, N4;

long L1, L2;

NUMBERTYPE Tp0, Tp1, Tp2;

if (N == 2)

{

Tp0 = (Global[X] + Global[X + 1]) * Global[H];

Tp1 = (Global[H] + Global[H + 1]) * Global[X + 1];

Tp2 = (Global[H] - Global[H + 1]) * Global[X];

CountAdd +=3;

CountMul +=3;

Global[X] = Tp0 - Tp1;

Global[X+1] = Tp0 - Tp2;

CountAdd +=2;

}

else

{

N2 = 2 * N;

N3 = 3 * N;

N4 = 4 * N;

L2 = (long)floor(0.5 + sqrt(N));

if (L2 * L2 != N)

L2 = (long)floor(0.5 + sqrt(N2));

16

L1 = N / L2;

for (k = 0; k < L1; k++)

for (i = 0; i < L2; i++)

{

Global[Y + L2 * k + i] = Global[X + L1 * i + k];

Global[Y + N2 + L2 * k + i] = Global[H + L1 * i + k];

Global[Y + N + L2 * k + i] = 0;

Global[Y + N3 + L2 * k + i] = 0;

}

PolyTransNB(2 * L1, L2, L2 / L1, Y);

PolyTransNB(2 * L1, L2, L2 / L1, Y + N2);

for (k = 0; k < 2 * L1; k++)

NegaConvolution(L2, Y + L2 * k, Y + N2 + L2 * k, Y + N4);

PolyTransBN(2 * L1, L2, -(L2 / L1), Y);

for (k = 0; k < L1; k++)

{

for (i = 1; i < L2; i++)

{

Global[X + L1 * i + k] = (Global[Y + L2 * k + i] +

Global[Y + N + L2 * k + (i - 1)]) / (2 * L1);

CountAdd++;

}

Global[X + k] = (Global[Y + L2 * k] - Global[Y + N + L2 * k + L2 - 1]) / (2 * L1);

CountAdd++;

}

}

}

void CircConvolution(long N, long X, long H)

{

long M;

long N2;

long X1, X2;

NUMBERTYPE Tp0, Tp1, Tp2;

N2 = 2 * N;

M = N / 2;

do

{

ModuloPlusMinus(M, X);

ModuloPlusMinus(M, H);

NegaConvolution(M, X, H, N2);

X += M;

H += M;

M /= 2;

} while (M != 1);

Tp0 = (Global[X] + Global[X + 1]) * Global[H];

Tp2 = (Global[H] - Global[H + 1]);

Tp1 = Tp2 * Global[X + 1];

Tp2 = Tp2 * Global[X];

CountAdd +=2;

CountMul +=3;

Global[X] = Tp0 - Tp1;

17

Global[X+1] = Tp0 - Tp2;

CountAdd +=2;

M = 2;

X1 = X - M;

X2 = X;

do

{

MulAddDiv(M, X1, X2);

X2 -= M;

M *= 2;

X1 -= M;

} while (M != N);

}

void main()

{

NUMBERTYPE * sequenceOne = new NUMBERTYPE[NMax];

NUMBERTYPE * sequenceTwo = new NUMBERTYPE[NMax];

NUMBERTYPE * resultFast = new NUMBERTYPE[NMax];

NUMBERTYPE * resultSlow = new NUMBERTYPE[NMax];

long N;

long X,H;

long i;

do

{

printf("Length of sequence = \n"); // N must be >= 4 and power of 2

scanf("%d", &N);

X = 0;

H = N;

for (i = 0; i < N; i++)

{

sequenceOne[i] = i; // just an example

sequenceTwo[i] = i + 10; // just an example

}

for (i = 0; i < N; i++)

{

Global[X + i] = sequenceOne[i]; // First part of Global must contain 1. sequence

Global[H + i] = sequenceTwo[i]; // Second part of Global must contain 2. sequence

}

CountAdd = 0;

CountMul = 0;

// Fast convolution

CircConvolution(N, X, H);

WriteResult(N, Global); // First part of Global contains the convolution

printf("\n");

// Standard convolution just for comparison

CircConv(N, sequenceOne, sequenceTwo, resultSlow);

WriteResult(N, resultSlow);

printf("Additions: %d \n", CountAdd);

printf("Multiplications: %d \n", CountMul);

}while (true);

}

18

	Introduction
	Basic facts
	Polynomial products and convolution
	Polynomial products and multiplication

	Circular convolution
	Computation of polynomial products modulo (ZN - 1)
	Computation of polynomial products modulo (ZN + 1)
	Computation of polynomial transforms
	Decimation-in-Time Algorithm
	Decimation-in-Frequency Algorithm

	The Chinese Remainder Theorem
	The Polynomial Transform
	Program example

