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Abstract

A formula for the nth diameter of a real interval is proved.
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In [1, p. 229] Fekete defines for an arbitrary compact subset E of the complex
plane and for each natural number n ≥ 2 the nth diameter of E as

(1) dn =
n(n−1)

√
Dn,

where Dn is the maximal value of the discriminant of n points in E. He shows that
the sequence d2, d3, . . . is decreasing and converges towards a non-negative number,
the transfinite diameter d of E.

The value of d for a certain set E is often easy to calculate, using methods from
complex function theory. But also the sequence dn is of interest, for instance (if
d < 1 and E is symmetrical with respect to the real axis) for obtaining simple
estimates of the highest degree N of a monic polynomial P with integer coefficients
and the property that its zeros are simple and all lie in E: We must have N < nmin,
where nmin is the lowest value of n for which the nth diameter dn of E is less than
one(see [1, p. 243]).

We shall consider the particular case where E is a real interval (a, b).
To calculate the nth diameter dn of this interval for a given value of n ≥ 2 we

use the definition,

(2) dn = n(n−1)

√

√

√

√max{
n−1
∏

j=1

n
∏

k=j+1

(xk − xj)2},

where the parameters x1, x2, . . . , xn satisfy the inequalities

(3) a ≤ x1 < x2 < · · · < xn ≤ b.

Thus, we simply have to maximize the discriminant of the numbers x1, x2, . . . , xn

subject only to the restrictions (3).
It is easily seen that for a given value of n the ratio dn/d does not depend on

the interval, and so we shall make the standard choice a = −1 and b = 1.
Clearly, we must have x1 = −1 and xn = 1. Taking logarithmic partial deriva-

tives of the discriminant with respect to the parameters x2, x3, . . . , xn−1 we find
the equations

(4)
n

∑

k=1
k 6=j

1

xj − xk
= 0 for j = 2, 3, . . . , n − 1.

Introducing the polynomial

(5) Pn(x) =

n
∏

k=1

(x − xk),

we have the identity

P ′
n(x) = Pn(x)

n
∑

k=1

1

x − xk
,

implying

P ′
n(x) − Pn(x)

x − xj
= Pn(x)

∑

k 6=j

1

x − xk
,
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which by differentiation at xj (use the expansion of Pn(x) at this point) yields

1

2
P ′′

n (xj) = P ′
n(xj)

∑

k 6=j

1

xj − xk
,

which shows that x2, x3, . . . , xn−1 are precisely the zeros of P ′′
n (x). So the polyno-

mial Pn must satisfy the differential equation

(6) n(n − 1)Pn(x) = (x2 − 1)P ′′
n (x).

Here we have compared the leading terms to get the factor n(n − 1).
Comparing in turn the other terms of decreasing degree, we see that the monic

polynomial Pn is, in fact, uniquely determined as a solution to (6). It has the form

(7) Pn(x) = (x2 − 1)
1

kn−2
P

(1,1)
n−2 (x)

in the notation of [3, pp. 272–274].

The number kn−2 is the leading coefficient of the polynomial P
(1,1)
n−2 as defined

for instance in [3], where one can also find a description of the properties of these
polynomials needed in the following.

For our applications it is more natural to define the Jacobi polynomials as monic,
and we shall do so in the sequel.

Note also that nominally we then have Pn = P
(−1,−1)
n (only defined for n ≥ 2).

Since the transfinite diameter d equals 1/2 for our chosen interval, the quantity
we look for is

(8)
dn

d
= 2D1/(n(n−1))

n ,

where Dn is the discriminant of the polynomial Pn.
As shown below, it is possible to get a simple explicit expression for Dn or, more

generally, for the discriminant of the Jacobi polynomial P
(α,β)
n . We have the

Lemma. The discriminant of the Jacobi polynomial P
(α,β)
n is

(9)

D(α,β)
n =

n
∏

k=2

4k−1kk(α + k)k−1(β + k)k−1(α + β + k)k−2

(α + β + 2k)2k−2(α + β + 2k − 1)2k−3

=2n(n−1)
n

∏

k=1

kk(α + k)k−1(β + k)k−1

(α + β + k + n)n+k−2
.

Remark.

This expression can also be obtained by combining the formulae (4.21.6) and
(6.71.5) of [4].

Proof.

Notation: Since α and β are fixed during this demonstration, we shall denote

P
(α,β)
n simply by Pn.
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We shall need the differential equation

(10) (x2 − 1)P ′′
n (x) = n(α + β + n + 1)Pn(x) − (x(α + β + 2) + α − β)P ′

n(x)

and the recurrence relation

(11) Pn(x) = (x + Bn)Pn−1(x) − CnPn−2(x),

where

(12) Bn =
α2 − β2

(α + β + 2n)(α + β + 2n − 2)
.

About Cn we need only know that it exists.
The second derivative of (11) is

(13) P ′′
n (x) = (x + Bn)P ′′

n−1(x) − CnP ′′
n−2(x) + 2P ′

n−1(x).

Multiplying with (x2 − 1) and using (10) we obtain

(13)

n(α + β + n + 1)Pn(x) − (x(α + β + 2) + α − β)P ′
n(x)

= (x + Bn)((n − 1)(α + β + n)Pn−1(x) − (x(α + β + 2) + α − β)P ′
n−1(x))

− Cn((n − 2)(α + β + n − 1)Pn−2(x) − (x(α + β + 2) + α − β)P ′
n−2(x))

+ 2(x2 − 1)P ′
n−1(x).

Using (11) to eliminate Cn we can simplify to
(14)

2(α + β + 2n − 1)Pn(x)

= (2x(α + β + n) + α − β + Bn(α + β + 2n − 2))Pn−1(x) + 2(x2 − 1)P ′
n−1(x),

and, by means of (12), to
(15)

(α+β +2n−1)Pn(x) = (α+β +n)

(

x +
α − β

α + β + 2n

)

Pn−1(x)+(x2 −1)P ′
n−1(x).

Differentiating and using (10) results in

(16) (α+β+2n−1)P ′
n(x) = n(α+β+n)Pn−1(x)+n

(

x +
β − α

α + β + 2n

)

P ′
n−1(x).

Solving the pair ((15), (16)) with respect to Pn−1(x) and P ′
n−1(x), we obtain

(17)

Pn−1(x) = Pn(x)
(α + β + 2n)(α + β + 2n − 1)((α + β + 2n)x + β − α)

4(α + β + n)(α + n)(β + n)

+ P ′
n(x)

(1 − x2)(α + β + 2n)2(α + β + 2n − 1)

4n(α + β + n)(α + n)(β + n)



THE NTH DIAMETER OF A REAL INTERVAL 7

and

(18)

P ′
n−1(x) = −Pn(x)

(α + β + 2n)2(α + β + 2n − 1)

4(α + n)(β + n)

+ P ′
n(x)

(α + β + 2n)(α + β + 2n − 1)((α + β + 2n)x + α − β)

4n(α + n)(β + n)
.

To derive an explicit expression for the ratio D
(α,β)
n /D

(α,β)
n−1 we note that for the

monic polynomials Pn (with zeros x1, . . . , xn) and Pn−1 (with zeros y1, . . . , yn−1)
the absolute value of the resultant is

(19)

|R(Pn, Pn−1)| =

n
∏

j=1

n−1
∏

k=1

|xj − yk|

=
n

∏

j=1

|Pn−1(xj)| =
n−1
∏

k=1

|Pn(yk)|,

while the discriminant of Pn satisfies

(20) D(α,β)
n =

n
∏

j=1

|P ′
n(xj)|.

Substituting successively x = y1, . . . , yn−1 in (15) and multiplying the results,
we obtain

(21) (α + β + 2n − 1)n−1|R(Pn, Pn−1)| = D
(α,β)
n−1

n−1
∏

k=1

(1 − y2
k),

while putting x = x1, . . . , xn, successively, in (17) and multiplying gives

(22) |R(Pn, Pn−1)| = D(α,β)
n

(

(α + β + 2n)2(α + β + 2n − 1)

4n(α + β + n)(α + n)(β + n)

)n n
∏

j=1

(1 − x2
j ).

Using

(23)
n

∏

j=1

(1 − x2
j ) = |Pn(1)Pn(−1)| =

(

n + β

n

)(

n + α

n

)

22n/

(

2n + α + β

n

)2

,

we finally deduce

(24) D(α,β)
n /D

(α,β)
n−1 =

4n−1nn(α + n)n−1(β + n)n−1(α + β + n)n−2

(α + β + 2n)2n−2(α + β + 2n − 1)2n−3
,

which, together with D
(α,β)
1 = 1, yields (9). �

The lemma cannot be used directly for α = β = −1, althhough it does give the
right result. It is safer, in this case, to use (24) only for n ≥ 3 and note that D2 = 4.
Anyway, the result is

(25) Dn = 4
n−1
∏

k=2

(k + 1)k+1(k − 1)k−1

(2k − 1)2k−1
.
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from which the ratio dn/d can be calculated using (8).
Numerical experiments seem to show that the value nmin corresponding to a

given interval-length d2 (see the beginning of this note) is somewhat too large, in
particular for d2 close to 4, and probably does not have the correct asymptotic
behaviour in this limit.

For instance, d2/d8 = 2.669, app., while the polynomial

P8(x) = (x3 − x2 − 2x + 1)(x2 − x − 1)(x + 1)x(x − 1)

has a span (difference between maximal and minimal zero) of 3.049, app.
And d2/d20 = 3.288, app., while the polynomial

P20(x) =(x5 − x4 − 4x3 + 3x2 + 3x − 1)(x3 − x2 − 2x + 1)(x3 − 3x − 1)

(x2 − 2)(x2 − x − 1)(x2 + x − 1)(x + 1)x(x − 1)

has span 3.6015, app.
There are two reasons for this discrepancy:
1) The zeros of our integer polynomials are not distributed in the span so as to

give maximal value of the discriminant.
2) The values of the discriminants are integers, but often (especially for large

values of the degree) much greater than one.
At least in the cases studied, the second effect is much more important than the

first one. For instance, for n = 8 we find the discriminant equal to 980, which with
optimal distribution of zeros corresponds to an interval of length 3.018, app. (rather
close to the span of 3.049 actually found), while, for n = 20, the discriminant equals
26777147443200, corresponding to an interval of length 3.5665, app. (the span was
3.6015, app.).

Thus it is essential, if more accurate determinations of maximal degrees N are
to be made, that good lower bounds for the obtainable values of the discriminant
are found.

Some elementary results should be mentioned here:
If n = 2, we may have a discriminant equal to one: P (x) = x(x−1), for instance.
If n = 3, one can use the well known formula for the discriminant and show that

the discriminant cannot be congruent to 2 modulo 4. A more involved argument
(see below) shows that there are no monic polynomials in Z[x] with the value 1
for the discriminant. Thus, for monic polynomials of degree 3, the lowest value for
the discriminant is 3; in fact, all such polynomials are equivalent (in the sense of
Robinson: any one can be obtained from any other by a tranformation x 7→ ±x+ t,
where t ∈ Z) with P (x) = x3 + x2 + x (this can be seen by means of the method
described below), so that, if we further require that all zeros be real, we have 4 as
the minimal value of the discriminant (example: P (x) = x(x − 1)(x − 2)).

If n = 4, we have a similar situation as for n = 3: The discriminant has lowest
positive value equal to 3 (thanks to the cubic resolvent the proofs are similar to but
somewhat more complicated than those indicated for n = 3), realized for example
by P (x) = x(x− 1)(x2 − x + 1). If we want all zeros real, the lowest positive value
of the discriminant is probably 5, with P (x) = x(x− 1)(x2 − x− 1) as an example.

And now the proof that the discriminant for a monic polynomial in Z[x] of degree
3 cannot be equal to 1:
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Let the polynomial be

(26) P (x) = x3 + cx2 + bx + a.

Its discriminant is

(27) D = |b2c2 − 4b3 − 4ac3 − 27a2 + 18abc|.

If D = 1, an argument modulo 4 shows that we must have

(28) b2c2 − 4b3 − 4ac3 − 27a2 + 18abc − 1 = 0.

An argument modolo 9 shows that c is not divisible by 3. Solving (28) for a we
obtain

(29) a =
9bc − 2c3 ±

√

(9bc − 2c3)2 − 27(1 + 4b3 − b2c2)

27
.

Assume that we can find integers b an c with c not divisible by 3, such that

(30) R =
√

(9bc − 2c3)2 − 27(1 + 4b3 − b2c2)

is real (and thus an integer).
The two possible numerators of a in (29) cannot both be divisible by 3 (otherwise

their difference, and thus c, would be divisible by 3). So, the condition that one of
these numerators be divisible by 27 is equivalent to the condition that their product
should be divisible by 27, and this is obviously true. ”All” we have to do is to solve
(30) under the conditions indicated above. We rewrite (30) as the diophantine
equation

(31) R2 = 4t3 − 27,

where

(32) t = c2 − 3b.

The condition that c is not divisible by 3 translates to the requirement that t must
not be divisible by 3. If (31) is solvable in integers R and t satisfying this condition,
t must be congruent to 1 moduli 3, and so c of (32) can be chosen arbitrarily (though
not divisible by 3), and the b satisfying (32) must then be an integer.

But the only solution of (31) in integers is (see [2, page 247, Theorem 5])

(33) (R, t) = (9, 3),

and so we cannot have D = 1 for the polynomial (33).
An experimental result: It seems that with increasing degree the numeric differ-

ence between the minimal values of the discriminant in the general (monic) case,
and the case where also all zeros are required to be real, increases markedly. And,
of course, with increasing degree also the degrees of some of the fields involved
increase, and so the minimal discriminant will approach infinity when the degree
of the polynomial increases indefinitely.

Remark. This paper was concluded in 1997, except for a few remarks added in
2009.
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