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ABSTRACT

The problem of hiding information imperceptibly can be for-
mulated as the problem of determining if a given image is
a member of a sufficiently large equivalence class of images
which to the Human Visual System appears to be the same
image. This makes it possible to replace the given image
with a modified image similar in appearance but carrying
imperceptibly coded information. This paper presents a
framework and an experimental algorithm to estimate upper
bounds for the size of an equivalence class.

Categories and Subject Descriptors

E.4 [Data]: Coding and Information Theory; I1.4.6 [Compu-
ting Methodologies]: Image Processing and Computer
Vision

General Terms

Experimentation, Measurement, Security, Theory

Keywords
Information hiding, image equivalence classes, perceptual
tolerance, capacity, digital watermarking

1. INTRODUCTION

Digital multimedia have made watermarking an issue of cen-
tral importance. The degree to which a given image or au-
dio/video data may be modified in an imperceptible way,
i.e. the capacity for hiding information, is a topic still being
investigated. We suggest an approach to determine if a wa-
termark can be embedded in an image. The method gives
an estimate for the upper bound on capacity, but do not tell
if a robust and tamper-proof or fragile watermark may be
hidden or not. That depends on the coding scheme and the
amount of redundancy used. By computing the number of

bits used the estimate of the capacity can be used to decide
if hiding is viable. The method exploits perceptual proper-
ties of the human visual system (HVS) in an experimentally
based analysis of the image in question, based on a novel use
of the principles utilized in multimedia compression schemes
like MPEG-4 ([8]). This paper does not consider how these
principles may be used in connection with audio or video
data.

‘We use an image source model resulting in equivalence class-
es each consisting of perceptually indistinguishable images,
in which an image instance is produced by a three-layer
process, one giving the high-level structure, one produc-
ing middle-level texture, and one representing the low-level
noise coming e.g. from the imaging process (A/D, sampling
and quantization).

2. IMAGE MODELS AND EQUIVALENCE
CLASSES

Ross Anderson has suggested to use Shannon entropy as a
measure of the steganographic capacity. The capacity is de-
termined from the entropies of the information to be hidden
I and the host image B: information may be hidden giving
image B* when H(I) < H(B) [1]. This criterion is however
not very useful. First, a definition of the entropy of a still
image is not straightforward because of the lack of appro-
priate models for the information source. Second, it does
not take into account that images are to be viewed, or that
automated image interpretation algorithms are designed to
imitate the HVS. As entropy is a statistical measure, modi-
fications may leave the entropy unaffected but still be highly
noticeable by the HVS.

‘We assume in this paper that we are given a particular class
of images (e.g. natural scenes, aerial photographs, medical
images) each described partly by deterministic constraints,
partly by stochastic properties. In recent years various re-
search groups have worked on the problem of statistical and
information-theoretical characterization of images. There
are some results concerning the combinatorial entropy of
images (2D fields) [2, 3, 6] and the Shannon capacity in two
dimensions. Another line of research is an attempt to con-
struct grammars for visual or two-dimensional languages.
A third research direction aims at characterizing images in



Figure 1: Equivalence classes. (a) top left “Lena”
image, right image “milk3”; below the amplitude com-
ponent of Lena has been replaced by the amplitude from
milk3. The structure survives although the image is vis-
ibly distorted. (b) left the histogram of Lena divided
into six partitions. Right the pixels in the third parti-
tion with grey values in the range 128..151. Bottom all
pixel values in each partition have been replaced by val-
ues taken from a Gaussian distribution with same mean
and variance.

Figure 2: Overall structure and noise. (a) Left an im-
age without capacity if interpreted as one black square
on a white background. (b) Middle three of several pos-
sible grammars (structure S) generating a square inside
another square. Black and white indicates which texture
model (T|S;) and stochastic distribution a given pixel
will come from. Top a single token having 16 possible
configurations. Middle two tokens in nine locations (2°
configurations). Bottom a square placed anywhere, of
any size that fits. With these interpretations of (a), Cg
is respectively 4, 9 or the order of M3 bit. (c) Right
noise N has been added. The image in (a) may then be
interpreted as a (very unlikely) member of a class having
its structure S from (b), uniform texture 7' and additive
noise N distributed as in (c¢), but by coincidence having
zero magnitude.

terms of their multi-fractal properties [9]. Wu et al. [10]
has defined Julesz ensembles as equivalence classes of im-
ages sharing some statistical properties and consequentially
looking similar.

The idea of equivalence classes is illustrated in figure 1. The
image in the second row is a combination of phase from the
left top image and magnitude taken from the right top im-
age. The resulting image belong to the same equivalence
class as the left image if we accept poor quality. The phase
information seems to be more important than the magni-
tude information in distinguishing classes. The bottom im-
age shows the results of systematically replacing pixel values
within six spatial images partitions. The images top/left and
bottom are quite similar.

The problem of hiding information imperceptibly can be for-
mulated as the problem of determining if a given image is
a member of a sufficiently large equivalence class. If this
is the case, it is possible to modify it by a suitable coding
scheme. The resulting image has similar appearance but is
carrying hidden information, which later may be extracted
again. The actual coding of the information to be hidden is
similar to modulation in a noisy channel. We assume some
parameterization of the images within a class, and code by
modifying the parameters systematically. Selecting an ap-
propriate number n of ”canonical” images with sufficiently
large decoding distance realizes the robustness required.

Let Uz, 0., p be the universe of all possible images of dimen-
sion Mj - M consisting of P-bit pixels. The size Uz, 1, P|
is 2M1M2P  Only a very small fraction of this huge number
of images is of any interest (carries true pictorial informa-
tion representing scenes from a model universe R). An im-
age In, My, € Uny Mo, p has some structure S (described
by e.g. a 2D grammar), texture 7' (which may be param-
eterized using a Markov model and locally depend on Sj,



notation T'|S;) and a stochastic element N, independent of
T and S. See figures 2 and 1(b).

If Qary m,P(S) C Uiy, Mo, P is the collection of images with
same overall structure S, then |Qar am,,p(S)| = Ks. We
denote by e.g. Ks and Ky|g, the size of equivalence classes
relating to S and T|S;. Ks = [[, Krys;, as the texture
depends on the actual local structural component S;. As
the noise may be assumed independent (Kyrs;, = Kn),
Krpis; = KnKrpn,s;- When convenient we will use Cs =
log,(Ks) instead of Kg etc., and Ag = M—IC_SATZ), the average
number of bits per pixel. Cs may be interpreted as the
image entropy H(I).

Robust encoding of information in one of the components is
possible if the corresponding K is large enough. Estimation
of these is not straightforward. Determining the number and
size of equivalence classes involves the given model universe
X and properties of the human visual system. Using the
structural element S seems difficult, as the number of classes
will be rather small and concerns the overall spatial proper-
ties of an image. Modifying the least significant bit of each
pixel is based on the assumption that Ks = Ky = M1 - M2
bit.

From the six normal distributions of the histogram of Lena
in figure 1 we can compute the contributions to the Krpg,
and K from the variances. Of the approximately 7.5 bit/pix-
el (entropy derived from the pixel frequencies) the variance
contributes at least 4.5 bit/pixel (average of the variances
for each of the six partitions). A rough guess of the real
noise level (V) is 30 dB or 0.2 bit/pixel, leaving 4.3 bit/pixel
for texture (T"). Assuming that the structural part S con-
tributes 0.1 bit/pixel, we may compute As = 4.3 bit/pixel.
The hiding capacity C's for Lena is then 512-512- 2% or 5
163 793 bit. This does not take into account the properties
of HVS, but gives an absolute upper bound. By the method
described in section 4 a capacity of 1,382,729 bit is found
for a 480 x 360 x 24 bit version of Lena. For some images
K will be insignificant, as illustrated in figure 2, where all
capacity comes from S, Cs = 4-9 bit.

The following sections of this paper provides a method for
determining Kr|s, and the distribution of capacity over an
image based on properties of the HVS.

3. PERCEPTUAL TOLERANCE

We define the perceptual tolerance at a pixel coordinate in
an image P as the amount that each pixel component (e.g.
RGB, or HSV) can be changed without changing in the per-
ception. The total tolerance is the product of all pixel toler-
ances. Images having pixel values in the tolerance intervals
belongs to the same equivalence class. The capacity for hid-
ing information is not expected to fully exploit the tolerance.

The perceptual tolerance may be determined experimentally
by combining a number of filter responses (here F; for 7
in 1...6) each enlarging the tolerance interval. For each
pixel component p;jr € P (i,j being the pixel coordinates,
k indicating the component) the tolerance is the interval
from Pk to D;;ji- These values are stored in the images P

and P. The algorithm has the following steps:

1. Initially P =P = P.

2. For each filter index i:

(a) Given P and a filter F; an image P* = F;(P) is gen-
erated. Fj is chosen in such a way that there will be
no perceptual difference between P and P*.

(b) P and P are updated by P = min(P,P*) and P =
maz (P, P*).

3. The resulting tolerance (the number of images in the equiv-
alence class) is Kg = Hijk(ﬁijk Pk +1), of the tolerance
at each position.

Steps 2a and 2b are repeated for filters that can be related to
certain vision phenomena, as identified in [5]. Descriptions
of these phenomena can be found in e.g. [4] and [7]. Figure
3 shows the tolerances in each pixel position of an image of
Big Ben, brighter pixels having larger tolerance.

The filters used concerns Krpg;:

e Mono- and polychromatic assimilation. According to [4]
HVS makes thin lines the same intensity as surrounding
areas. This monochromatic assimilation is estimated by
threshold based mean filters Fi(Pyssim,m) (equal weigth)
and F3(Pgssim,w) (weighted). A corresponding use of fil-
ters can probably be used for polychromatic assimilation.

e Area homogeneity F3(Pg,) (value) and Fa(Pg, ) (hue). In
a 3 X 3 pixels area the variances for hue and value are de-
termined and thresholded.

e Just noticeable distortion JND. A JPEG-compression with
a suitable loss factor Pj,q has been used as F5(Pjnq), the
difference when decompressing again is used as a measure.

e Edge enhancement. The position of edge pixels was deter-
mined by a simple 3 X 3 Sobel filter applied to the value
component, and Fg(Peqge) is determined as Pegge percent
of the edge strength found.

4. TOLERANCE RESULTS

In [5] the applicability of the filter set was evaluated by
asking 18 subjects. Each subject looked at 106 sets of nine
images. Either the nine images were identical, or two of
them (identical) had been modified. A subject was asked to
identify zero, one or two differing images. The aim of the
study was to determine the perceptual tolerance and the
values for the filter parameters. The 106 sets of images were
based on six basis images.

The parameter values to be used are those causing at most
half of the subjects to notice any difference. The results
of the study for two of these parameter values are shown
in figure 4. The upper plot illustrates the determination of
Pedge- Two graphs are shown since each parameter value
was tested in two different ways. The lower plot in 4 shows
the 3D plot for pgm,, where the abscissae shows repectively
the threshold and the percentage change in pixels chosen by
the threshold used.

Our hypothesis is that the more a given parameter allowed
an image to be changed, the easier it is for the subject to
notice the changes. This hypothesis was proven to be true
for some of the parameters involved.



Figure 3: Tolerance. Top the 480 x 360 image “Bigben”,
bottom the tolerance image (the difference between the
bounding images), dark signifying low tolerance, white
high tolerance.

°
©

max contrast pattern
random pattern

°
S

Using the parameter values found we were able to calculate
the perceptual tolerance in a number of images. The cor-
responding total capacity is 1,283,542 bit for Bigben and
1,382,729 bit for Lena.

5. DISCUSSION AND CONCLUSION

This article presents a model which gives a basis for deter-
mining whether information hiding is possible, and if possi-
ble, then to which extent in each individual image.

Known psychophysical properties of the human visual sys-
tem are expressed as filters and tolerance limits, which makes
it possible to determine an upper bound on the capacity of
an image. The actual capacity depends on how the infor-
mation is coded and the redundancy requirements.
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