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3.1 Poiseuille flow in a rectangular pipe – the structure of the velocity field

In a rectangular pipe, with the dimensions depicted in figure 1, there is a flow in the x
direction with −∆p: p(0) = p0 +∆p and p(L) = p0. Constant density %(x, y, z, t) = %0

and the no-slip boundary condition are assumed fulfilled.
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Figure 1: Geometry of the rectangular pipe.

Clearly the flow will only have a velocity field U acting in the x direction. Fur-
thermore ux can only be a function of the y and z since the system in translational
invariant along the x axis. To summarise U must be on the form:

U(x, y, z) =
(
ux(y, z), 0, 0

)
(1)

The continuity equation must of course be fulfilled to ensure mass conservation.
This is checked:

∂

∂t
%(x, y, z, t) = −∇ · J = −∇ · (%(x, y, z, t)U

) ∧ %(x, y, z, t) = %0

⇒ 0 = ∇ · U

∇ · U = ∂xux(y, z) + ∂y0 + ∂z0 where ∂i ≡ ∂

∂i

= 0 (2)
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3.2 Poiseuille flow in a rectangular pipe – Fourier transformation

With % = %0, no acting body forces, and the structure (1) of U the Navier-Stokes
equation reduces to:

%
D

Dt
U = %

( ∂

∂t
+ U ·∇

)
U

= −∇P + η∇2U + f

⇒ ∇2ux(y, z) =
∇P

η

=
p(L)− p(0)

ηL

=
−∆p

ηL
(3)

The traditional time domain Fourier series is given by:

f(t) ' 1
2
a0 +

∞∑

n=1

(
an cos(nωt) + bn sin(nωt)

)

an =
2
T

∫ T

0
f(t) cos(nωt) dt

bn =
2
T

∫ T

0
f(t) sin(nωt) dt (4)

This series is easily transformed to the space domain by the substitution nωt = n π
wy

or nωt = nπ
hz. The two-dimensional space domain Fourier series of ux(y, z) is:

ux(y, z) =
∞∑

n=1

∞∑

m=1

unm sin
(
n

π

w
y
)

sin
(
m

π

h
z
)

(5)

where unm correlates the the y and z dependence, so that in general ux(y, z) 6=
ux(y)ux(z). That ux(y, z) is only given by sine functions is due to the boundary
conditions. However, this does not explain why cross products of sines and cosines
does not exist. That (5) is a solution can, however, be shown to be true by showing
that it obeys the boundary conditions, and finding unm so that (3) is fulfilled. The
boundary conditions are obeyed since:

ux(0, z) =
∞∑

n=1

∞∑

m=1

unm sin (0) sin
(
m

π

h
z
)

= 0

ux(w, z) =
∞∑

n=1

∞∑

m=1

unm sin (nπ) sin
(
m

π

h
z
)

= 0

ux(y, 0) =
∞∑

n=1

∞∑

m=1

unm sin
(
n

π

w
y
)

sin (0) = 0

ux(y, h) =
∞∑

n=1

∞∑

m=1

unm sin
(
n

π

w
y
)

sin (mπ) = 0
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One way of determining unm is by making an appropriate Fourier series of the right
hand side of (3) and compare it to the left. The Fourier series of 1 is:

an =
2
w

∫ w

0
cos

(
n

π

w
y
)

dt =
2

nπ

[
sin

(
n

π

w
y
)]w

0
= 0

bn =
2
w

∫ w

0
sin

(
n

π

w
y
)

dt =
−2
nπ

[
cos

(
n

π

w
y
)]w

0
=

{
0 for n even
4

nπ for n odd

⇒ 1 =
4
π

∞∑

n odd

1
n

sin
(
n

π

w
y
)

(6)

Naturally, 1 can also be expressed in an equivalent form in the z direction. This
implies that both sides of (3) take on similar forms:

−∆p

ηL
=
−∆p

ηL
· 1 · 1 =

−16
π2

∆p

ηL

∞∑

n odd

∞∑

m odd

1
nm

sin
(
n

π

w
y
)

sin
(
m

π

h
z
)

∇2ux(y, z) = −π2
∞∑

n=1

∞∑

m=1

unm

(
n2

w2
+

m2

h2

)
sin

(
n

π

w
y
)

sin
(
m

π

h
z
)

From this unm can be deduced, and it can be seen that only odd terms in (5) should
be included:

unm =
16
π4

∆p

ηL

1

nm
(

n2

w2 + m2

h2

) (7)

ux(y, z) =
16
π4

∆p

ηL

∞∑

n odd

∞∑

m odd

1

nm
(

n2

w2 + m2

h2

) sin
(
n

π

w
y
)

sin
(
m

π

h
z
)

(8)

3.3 Poiseuille flow in a rectangular pipe – the velocity field

A plot of the solution (8) of the velocity field is wanted. To make this one have to
find n,m values that are large enough for the series to reach the limit of convergence.
Figure 2 shows test plots that can be used to determine the needed values for n and m.
From these it is easily seen that the needed values grows rapidly for increasing h : w.

Naturally the n/m value affect only the resolution along the y/z direction, which
means that one can minimise the number of calculations needed to compute (8); for
instance n & 100 is needed for h : w = 1 : 50 (figure 2.b) while only m = 35 is sufficient
(figure 2.b). For simplicity n = m will be used in the plots.

The plots in this section have been made with the aid of the MATLAB code in
appendix A. Unless otherwise stated the amplitude of all plots is normalised to 1.

Contour and surface plots for h : w = 1 : 1, 1 : 3, 1 : 10 are shown in figure 3 to 5
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(a) 1:10 pipe.
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(b) 1:50 pipe.

Figure 2: Flow profile ux(y, h/2) for h : w dimensions. For each plot the value of
n = m is shown.

(a) Contour plot. (b) Surface plot.

Figure 3: Flow profile ux(y, z) for h : w = 1 : 1 dimensions. n = m = 35 is used. If
higher resolution were employed a circular inner structure would be seen.

(a) Contour plot. (b) Surface plot.

Figure 4: Flow profile ux(y, z) for h : w = 1 : 3 dimensions. n = m = 35 is used. A
more elliptic inner structure would be seen with increased resolution.
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(a) Contour plot. (b) Surface plot.

Figure 5: Flow profile ux(y, z) for h : w = 1 : 10 dimensions. n = m = 35 is used.
Using higher values of n,m would remove the ripple.

Infinitely Wide Rectangular Pipe/Infinite Parallel Planes

The flow in the rectangular pipe can as seen in the plots be approximated with an
infinitely wide rectangular pipe (w → ∞) (IWRP) for increasing h : w. This can
come in quite handy since computation of (8) can be quite time consuming. Following
arguments similar to the ones used in section 3.1 one find the structure U(x, y, z) =(
ux(z), 0, 0

)
. Checking that the continuity equation is obeyed, and that Navier-Stokes

reduces to (3) is trivial. By checking the no-slip boundary condition, and inserting in
(3) it can be shown that the velocity profile for the IWRP with h = 2a is:

uIWRP
x (z) = z(2a− z)

∆p

2ηL
(9)

This profile is plotted in figure 6.

(a) Contour plot. (b) Surface plot.

Figure 6: Flow profile ux(z) for IWRP.

How large h : w relationship that is required to obtain a good approximation with
the IWRP is addressed in the following. From figures 4, 5, 7, and 8 one can see that
the main error along the y axis confines to [0; a] and [w−a; w] quite fast for increasing
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h : w. This is easily understood from the 1 : 1 case from where it is obvious that the
wall affects the water to the a ”depth”. As an example the error for a 1 : 30 geometry
approximated with the IWRP is less than 1/30 = 3.3%.

A better error analysis can be performed by looking at the standard deviations
between the actual flows and the flow in the IWRP. Since these calculations involves
only one point from each flow the unbiased (N − 1 normalisation) standard deviation
reduces to:

σ =
√

V =

√√√√ 1
N − 1

N∑

i=1

(xi − µ)2 , µ =
1
N

N∑

i=1

xi

= . . . =
1√
2
|x1 − x2| (10)

Figure 7 and 8 shows the results of this calculation on different geometries. If
one sum up the errors and normalise by the geometry (h + 1)(w + 1)∗ one find a
number for how good the approximation is in each case; actually you get the average
standard deviation in units of ∆p

ηL since this factor is omitted in the calculation of
both. The results of such summations are listed in table 1 where the mean value of
uIWRP

x is also stated. With this method one find an average error of each coordinate
on 0.13148/7.5 = 1.75% when the 1 : 30 flow is compared to the IWRP flow.

(a) Contour plot. (b) Surface plot.

Figure 7: Standard deviation between IWRP and the 1 : 3 pipe; n = 35. Units of ∆p
ηL .

The values of max(ufinite
x ) in table 1 might seem a bit odd since they exceed

max(uIWRP
x ) = 12.5. The higher velocities comes from the ripple from the finite

approximation. This ripple can be removed by choosing larger values for n and m (e.g.
try comparing the values for 1 : 30 and 1 : 50).

By plotting the average standard deviations (stdavg) from table 1 (figure 9.a) it
is seen that there is a potential dependence of w

h . This is confirmed by the linear
dependence one find by making a ln-ln plot (figure 9.b). An analytical expression for

∗That 1 has to be added to each axis is due to the fact that a matrix containing ux has rows and
columns proportional to (w + 1) and (h + 1).
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(a) Contour plot 1 : 10, n =
35.

(b) Contour plot 1 : 30, n =
120.

(c) Contour plot 1 : 50, n =
120.

Figure 8: Standard deviation between IWRP and pipes with different geometry. Units
of ∆p

ηL .

h : w=1:3 h : w=1:10 h : w=1:30 h : w=1:50
1

(h+1)(w+1)

∑w
y=0

∑h
z=0 σyz 1.2595 0.39043 0.13148 0.083674

max(ufinite
x ) 12.267 12.515 12.508 12.548

max(uIWRP
x ) 12.5 12.5 12.5 12.5

Table 1: Results from the error analysis. The mean value of uIWRP
x is 〈uIWRP

x 〉 = 7.5.
Units of ∆p

ηL .

the standard deviation can easily be found:

ln(stdavg) = a ln
(w

h

)
+ b

⇔ stdavg =
(w

h

)a
· eb (11)

By making the best linear fit a = −0.96916 and b = 1.2911 is found. A plot of the
model is found in figure 9.

0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Normal plot. Units of ∆p
ηL

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-3

-2

-1

0

1

2

(b) ln-ln plot. Units of ln
(

∆p
ηL

)
.

Figure 9: Average standard deviations as a function of w
h . Triangles show calculated

points, and the curve shows the fitted model.
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3.4 Poiseuille flow in a microfluidic laser

At MIC a microfluidic dye laser has been produced. The active part of it consists of
a cavity (rectangular channel) where ethanol carrying the active dye is flowing. For
proper functioning a flow rate of Q = 10µL/hour is required. The length of the channel
is L = 122mm, the width w = 300µm, and height h = 10µm. The viscosity of ethanol
is close to water’s – at room temperature it is ηethanol = 0.001197Pa s.

In section 3.3 it was found that the error introduced when employing the IWRP for
a 1 : 30 geometry is less than 2%. Therefore the IWRP is justifiably employed since
the pressure drop needed to enable Q is more easily calculated with this model. The
flow rate for the IWRP and the needed pressure drop is:

Q =
∫ w

0

∫ h

0
uIWRP

x (z) dz dy =
∫ w

0

∫ h

0
z(h− z)

∆p

2ηL
dz dy

=
∆p

2ηL

∫ w

0

[
1
2
hz2 − 1

3
z3

]h

0

dy =
∆p

12ηL

∫ w

0
h3 dy

=
∆p

ηL

wh3

12
(12)

⇔ ∆p =
12QηL

wh3
= 1.6 · 104Pa ≈ 0.16atm

This pressure drop is a reasonable ∆p for a micro chip since it is quite low. It
corresponds to the pressure of a 1.6m tall water column. By computing a more correct
flow rate for ufinite

x (y, z) one can find that that the IWRP model can be improved by
using w − 0.6h instead of w.
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3.5 The hydraulic resistance of a micro-mixer

The pressure drop is linked to the flow rate by the hydraulic resistance in a manner
similar to Ohm’s law for a electrical resistor:

∆p = RhydQ

⇒ RIWRP
hyd =

∆p

Q
=

12ηL

wh3
(13)

This expression can then be used to calculate the total hydraulic resistance of the
micro-mixer shown in figure 10.a. The six inlet pressures are p0 + ∆p, and the outlet
pressure is p0. Figure 10.b shows the equivalent circuit diagram for the mixer. The
total resistance of the mixer (corners are assumed to have a zero resistance) is:

Rinner = (R1 + R4)‖R2 + R4

Rbranch = Rinner‖R3 + R5

Rtot = Rbranch‖Rbranch + R5 = Rbranch/2 + R5 (14)

R1-R5 is calculated with (13) and Rtot is computed using the relations for serial
and parallel resistors. For simplicity the IWRP model is used even though we only
have a 1 : 6 geometry where the average standard deviation (11) is 8.5%. ηwater =
0.0010021928Pa s is used. The result of the calculations can be found in table 2.

(a) Micro-mixer dimensions.

���

���

���

���

���

���

���

	

(b) Micro-mixer equiva-
lent circuit diagram.

Figure 10: Drawing and model of the micro-mixer.

R1 R2 R3 R4 R5 Rinner Rbranch Rtot

1.99 · 1013 2.21 · 1013 2.44 · 1013 4.49 · 1012 2.25 · 1012 1.61 · 1013 1.19 · 1013 8.21 · 1012

Table 2: Hydraulic resistances. Units of Pa s
m3 .
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A MATLAB Code

The MATLAB code listed in this section is not prepared for presentation! It is ugly
and only intended to help the author remember what commands that was used to
make the calculations in MATLAB for this assignment.

%Exercise 3

clear workspace;

% 1D plots for z=h/2 along y (actually it’s the other way around, bet cuz of sym)

w = 10;

h = 10;

N = 1;

M = N;

u = zeros(w+1,h+1); %for 2D

%u = zeros(1,h+1); %for 1D

for y=0:w %for 2D

%y=w/2; %for 1D

for z=0:h

for n=1:N

for m=1:M

if (mod(n,2)+mod(m,2)==2) % only odd n and m’s

u(y+1,z+1) = u(y+1,z+1) + 1/(n*m*(n^2/w^2 + m^2/h^2))*sin(n*pi*y/w)*sin(m*pi*z/h); %for 2D

%u(1,z+1) = u(1,z+1) + 1/(n*m*(n^2/w^2 + m^2/h^2))*sin(n*pi*y/w)*sin(m*pi*z/h); %for 1D

end

end

end

end

end %for 2D

u = u’;

u = u/max(max(u)); % normalise

%1D plot

%Make multiple plots in same figure by running the script multiple times with varying m and n

%figure(10);

%plot(0:0.1:z/10,u);

%ylabel(’norm(u(y,h/2))’);

%xlabel(’y’);

%hold on;

%2D plots

%figure(1);

%contour(0:0.1:w/10, 0:0.1:z/10, u, 3000);

%%figure(2)

%%surf(0:0.1:w/10, 0:0.1:z/10, u); %the interpolation gives an arti-looking plot

%%shading interp;

%figure(3)

%contour3(0:0.1:w/10, 0:0.1:z/10, u, 3000);

%Infty rect pipe

clear workspace;

w = 1;

h = 50;

a = h/2;

u = zeros(h+1,w+1); %for 2D

for z=0:h
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u(z+1,1) = z*(2*a-z);

end

for i=1:w

u(:,i+1) = u(:,1);

end

u = u/max(max(u)); % normalise

%2D plots

figure(1);

contourf(0:100:w*100, 0:0.1/5:z/50, u, 1000);

shading flat;

%figure(3)

%contour3(0:100:w*100, 0:0.1/5:z/50, u, 5000);

%Exercise 3 - Calc of avg std

clear workspace;

format long;

w = 300;

h = 10;

N = 120;

M = N;

u = zeros(w+1,h+1); %for 2D

for y=0:w %for 2D

for z=0:h

for n=1:N

for m=1:M

if (mod(n,2)+mod(m,2)==2) % only odd n and m’s

u(y+1,z+1) = u(y+1,z+1) + 1/(n*m*(n^2/w^2 + m^2/h^2))*sin(n*pi*y/w)*sin(m*pi*z/h); %for 2D

end

end

end

end

end %for 2D

u = u’;

max(max(u))

u = u*16/pi^4; %get in terms of Dp/(etaL)

%Infty rect pipe

a = h/2;

u2 = zeros(h+1,w+1); %for 2D

for z=0:h

u2(z+1,1) = z*(2*a-z);

end

for i=1:w

u2(:,i+1) = u2(:,1);

end

max(max(u2))

u2 = u2/2; %get in terms of Dp/(etaL)

error = 1/sqrt(2)*abs(u-u2);

% Exercise 3

% Plots for the error analysis

clear workspace;

errorX = [3 10 30 50];
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errorY = [1.25949932267368 0.39042785855980 0.13148055121231 0.08367385765654];

figure(1);

plot(log(errorX),log(errorY),’k^’);

hold on;

c = polyfit(log(errorX),log(errorY),1);

xpoints = [0 5]; %x points for the line

ypoints = polyval(c, xpoints);

plot(xpoints,ypoints,’b-’);

figure(2); %points in normal plot plotted along with model

x = 0:0.1:55;

y = x.^c(1)*exp(c(2));

plot(errorX,errorY,’k^’,x,y,’b-’);

axis([0 55 0 2]);

%Exercise 3.5 - hydraulic resistances

clear workspace;

w = 300e-6;

h = 50e-6;

eta = 0.0010021928;

L = 7e-3

R = (12*eta*L) / (w*h^3)

R1 = 1.988350515199999e+013

R2 = 2.212841702399999e+013

R3 = 2.437332889599999e+013

R4 = 4.489823743999998e+012

R5 = 2.244911871999999e+012

R_inner = ((R1+R4)*R2) / (R1+R2+R4) + R4 %1.608816646002758e+013

R_branch = (R_inner*R3) / (R_inner+R3) + R5 %1.193615459581677e+013

R_tot = R_branch/2 + R5 %8.212989169908382e+012
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