Color addition and subtraction

See: http://www.glenbrook.k12.il.us/gbssci/Phys/Class/light/u12l2d.html and: http://www.glenbrook.k12.il.us/gbssci/Phys/Class/light/u12l2e.html

Wikipedia:
See: http://en.wikipedia.org/wiki/Additive_color and http://en.wikipedia.org/wiki/Subtractive_color

Simplified colors:
B Blue, G Green, R Red (primary colors)
C Cyan, Y Yellow, M Magenta (secondary colors)
W White, 0 Black

Addition:

$\mathrm{B}+\mathrm{G}+\mathrm{R}=\mathrm{W}$
$\mathrm{G}+\mathrm{R}=\mathrm{Y}$
$\mathrm{R}+\mathrm{B}=\mathrm{M}$
$B+G=C$

Subtraction:
$\mathrm{W}-\mathrm{C}-\mathrm{Y}-\mathrm{M}=0$
Complementary colors:
$\mathrm{Y}=\mathrm{G}+\mathrm{R}=\mathrm{W}-\mathrm{B}$
$\mathrm{M}=\mathrm{B}+\mathrm{R}=\mathrm{W}-\mathrm{G}$
$C=B+G=W-R$
Mixing C and Y on white paper in white light:
C is reflected because the C -pigment on the paper absorbs R Y is reflected because the Y -pigment on the paper absorbs B
 The ray arriving into your eye will be G :

Mixing C and Y : $\mathrm{W}-\mathrm{R}-\mathrm{B}=\mathrm{G}$
Mixing Y and M : $\mathrm{W}-\mathrm{B}-\mathrm{G}=\mathrm{R}$
Mixing M and C : $W-G-R=B$

This is very simplified, assuming equal intensities.
See also mixing examples in http://www.glenbrook.k12.il.us/gbssci/Phys/Class/light/u12l2e.html Be aware of that this "color-algebra" is restricted in the sense that you cannot subtract something which is not there, as in example 2 of the former reference.

